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ARTICLE INFO ABSTRACT

Keywords: Urinary tract infections (UTIs) present a global diagnostic challenge, especially in populations where midstream
Antimicrobial resistance urine collection is impractical. This study evaluates sodium polyacrylate-based diapers as a non-invasive matrix
diapers ) . ) for urine collection, coupled with quantitative PCR (qPCR) for uropathogen detection. Phase I involved 17
Ill/i)ol;e:curlyaliilsagnostlc techniques samples (7 contrived, 10 from diaper-wearing volunteers), and Phase II analyzed 35 de-identified clinical

specimens using a CLIA/CAP-validated qPCR panel targeting 17 bacteria, 4 fungi, 6 antimicrobial resistance
genes, and 1 control gene. Diaper-derived samples demonstrated 100 % concordance in positive and negative
predictive values with standard urine specimens. Across all clinical samples, mean cycle threshold (Ct) differ-
ences ranged from —2.06 to 3.87 (mean absolute difference = 1.43), with lower variability in diaper samples (SD
= 4.02 vs. 4.48) and strong correlation in Ct values (r = 0.97). These findings validate the diaper matrix as a
clinically robust, non-invasive alternative that maintains diagnostic integrity under simulated transport and
storage. This approach enables accurate molecular detection of uropathogens while minimizing invasive pro-
cedures, offering immediate applicability for infants, the elderly, and individuals with incontinence—thereby

Polymerase chain reaction
Urinary tract infections
Uropathogenic bacteria

enhancing diagnostic access, accuracy, and antimicrobial stewardship in vulnerable populations.

1. Introduction

The urinary system is essential for maintaining urinary homeostasis
[1]. However, this delicate balance is often disrupted by urinary tract
infections (UTIs), a widespread health concern affecting nearly half of
the global population at least once in their lifetime [2]. Moreover,
recurrent UTIs are prevalent, particularly affecting females [3]. Timely
diagnosis is crucial, particularly for vulnerable populations, yet tradi-
tional urine cultures often fail to detect pathogens, especially following
antibiotic use or in the case of hard-to-culture microorganisms [4]. To
address these limitations, advanced diagnostics beyond culture-based
methods are increasingly being adopted to improve the accuracy and
speed of UTI detection [5-8]. A significant focus has been on polymerase
chain reaction (qPCR), which offers greater sensitivity and specificity
compared to traditional urine culture, particularly for detecting fastid-
ious or low-abundance uropathogens [9-12].

Collecting midstream urine samples is challenging in elderly and
pediatric populations, particularly infants and those with incontinence
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or neurodegenerative conditions like dementia. Standard methods are
impractical, and catheterization poses risks of distress and nosocomial
infections [13]. Elderly individuals, especially in care facilities where
UTI prevalence reaches up to 50 %, face severe risks like urosepsis,
hospitalization, and delirium [14,15]. High UTI rates also drive anti-
biotic overprescription and antimicrobial resistance [16]. Consequently,
focus has shifted to evaluating non-invasive methods, such as sodium
polyacrylate-based diapers, for UTI diagnostics [17-20].

Although extraction-based diaper techniques are well-established in
clinical settings, they are underutilized in molecular diagnostics. While
Shvartzman and Nasri [17] reported high sensitivity and specificity with
culture-based methods, these methods fall short of the accuracy offered
by qPCR [11]. Other approaches, such as colorimetric detection of uri-
nary biomarkers like pH, leukocytes, and nitrites, can indicate the
presence of a UTI but lack the specificity to identify the pathogen
involved [18]. Point-of-care, diaper-embedded diagnostic tools provide
rapid screening [19,20], but their inability to differentiate between
uropathogens limits their precision compared to qPCR. In contrast,
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Inami and Inoue [21] demonstrated PCR-based detection of Cytomeg-
alovirus (CMV) using urine absorbed by filter paper placed inside baby
diapers. Their study effectively isolated CMV from known cases but did
not address the viability of using sodium polyacrylate-based diapers for
molecular testing.

The present study aims to validate a Clinical Laboratory Improve-
ment Amendments (CLIA) laboratory-developed test (LDT) [22] that
uses sodium polyacrylate-based diapers for urine collection, followed by
gPCR analysis. This method facilitates non-invasive urine collection for
individuals unable to provide midstream samples, such as infants and
the elderly. Our findings show that urine collected from diapers remains
viable for qPCR analysis with minimal loss of diagnostic sensitivity. This
approach offers a promising improvement in UTI diagnostics, enhancing
both accuracy and accessibility for challenging patient populations.

2. Materials and methods

This study builds upon previous research involving sodium
polyacrylate-based diapers as non-invasive matrices for urine collection
in molecular diagnostics from contrived samples [23]. In contrast, the
research expands the analysis with a broader dataset of 35 de-identified
clinical samples, encompassing both positive and negative cases, to
provide enhanced diagnostic insights. Furthermore, this study extends
the methodology in several critical ways. It includes statistical analysis
demonstrating 100 % positive and negative predictive values (PPV and
NPV) between diaper-derived and traditional urine samples, validating
the diagnostic concordance. Additionally, it uniquely evaluates the
stability of diaper-derived urine samples under simulated transport and
storage conditions, a novel aspect not addressed in the earlier work.
Finally, the current research contextualizes its findings within clinical
workflows by addressing practical considerations such as antimicrobial
stewardship and scalability, thereby supporting the broader adoption of
this non-invasive diagnostic method. By explicitly building upon the
prior dataset [23], this manuscript provides a clinical advancement of
the methodology, offering actionable insights for clinical practice. To
ensure comprehensive contextualization, we include the methodology
of contrived sample testing in this study.

2.1. Optimizing urine extraction from diaper materials

This study aimed to optimize urine extraction from sodium
polyacrylate-based diapers to enable accurate pathogen detection
through molecular diagnostics. The qPCR method used can identify 22
uropathogens, 6 fungal species, and 18 antimicrobial resistance (AMR)
genes (Table 1). The main objective was to validate these diapers as a
viable non-invasive urine collection method for patients where con-
ventional collection is impractical. Clinically contrived samples, spiked
with known uropathogens, were used to simulate real-world scenarios.

2.2. Samples

Urine samples (1 pL) from clinical specimens received from Advanta
Genetics (Tyler, Texas; www.aalabs.com) were inoculated onto Blood
Agar Plates (Remel™, TSA with Sheep Blood) and CDC Anaerobic Blood
Agar Plates (Remel™) using 1 uL disposable inoculation loops (Thermo
Scientific, Blue Disposable Inoculation Loop). The streaking pattern used
is illustrated in Fig. 1. Blood agar plates were incubated aerobically at
37°C for 24-48 hours with 5 % CO2, while CDC plates were incubated
anaerobically at 37°C for 24-48 hours using anaerobic gas pouches (BD
GasPak™ EZ Anaerobe Gas Generating Pouch System with Indicator).

Following incubation, isolated colonies were resuspended in dem-
ineralized water (Thermo Scientific, Sensititre™ Demineralized Water)
and vortexed for 10 seconds at maximum speed using a Vortex-Genie 2.
The bacterial suspension was standardized to a 0.5 McFarland Standard
using a nephelometer (Thermo Scientific, Sensititre Nephelometer).
Once standardized, 10 pL of the bacterial suspension was inoculated into
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Table 1
PCR Panel of Uropathogens, Fungal Species, and Antimicrobial Resistance
Genes.
Master FAM SUN CY5
Mix
Solution
1 Enterococcus faecalis Enterococcus Enterobacter
faecium cloacae
2 Streptococcus agalactiae Streptococcus Klebsiella
pyogenes aerogenes
3 Proteus mirabilis Klebsiella Vancomycin
pneumoniae resistance gene M
(VanM)
4 Pseudomonas aeruginosa Staphylococcus Morganella
aureus morganii
5 Candida albicans Klebsiella oxytoca Proteus vulgaris
6 Candida tropicalis Candida Aerococcus urinae
parapsilosis
7 New Delhi Metallo- BLANK Actinotignum
p-lactamase (NDM) schaalii
8 RNAseP Candida glabrata Escherichia coli
9 Klebsiella pneumoniae Temoniera Citrobacter species
carbapenemase (KPC) B-lactamase
(TEM)
10 Oxacillinase (OXA) Tetracycline Acinetobacter
resistance gene M baumannii
(tetM)
11 Aminoglycoside Sulfhydryl Serratia
nucleotidyltransferase variable marcescens
(ant-1a) B-lactamase (SHV)
12 Aminoglycoside Gyrase A (gyrA) Prevotella bivia
phosphotransferase
(aph3)
13 Quinolone resistance Tetracycline Staphylococcus
(qnr) resistance gene B saprophyticus
(tetB)
14 Methicillin resistance Vancomycin Bacteroides fragilis
gene (MecA) resistance gene
(VanA)
15 Sulfonamide resistance Dihydrofolate Vancomycin
gene 1 (Sull) reductase type Al resistance gene B
(DfrA1) (VanB)
16 Epidermophyton floccosum Trichophyton Cefotaximase-
rubrum Munich 1
(CTXM1)

11 mL of Cation-Adjusted Mueller-Hinton Broth with TES (Thermo
Scientific, Sensititre™). The inoculated broth was then aliquoted into ID
plates (Thermo Scientific, Sensititre™ GPID or GNID) via the Sensititre
Aim liquid handling system, based on the results of the initial Gram
stain. Additionally, a subset of the broth was streaked onto 1/6th of an
agar plate (Fig. 2) to verify the purity of the isolated colonies used for
identification via the Sensititre ARIS HiQ system (Thermo Scientific).

Identification numbers were assigned to each organism, and the
colonies were selected as spiking candidates. Clinical isolates obtained
from Advanta Genetics were chosen to ensure variability, representing a
wide spectrum of categories and Gram-staining characteristics (Table 2).
This diversity allows for a comprehensive evaluation of the test’s diag-
nostic capabilities across multiple pathogen types.

2.3. Diaper spiking procedure

Urine samples (50 mL each) were collected from 7 healthy adult
volunteers using a midstream clean-catch method in sterile specimen
containers (LabAid™, Sterile Specimen Container with Temperature
Strip). These initial samples were not screened for microbial contami-
nation, as the primary goal of this experiment was to validate the
feasibility of recovering known, intentionally introduced uropathogens
from sodium polyacrylate-based diaper matrices using our Clinical
Laboratory Improvement Amendments (CLIA) and College of American
Pathologists (CAP) accredited qPCR laboratory-developed test (LDT).
Each sample was inoculated with single colonies of pre-characterized
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Fig. 1. Streaking pattern on agar plate for isolation of uropathogens. This
figure illustrates the streaking pattern used to isolate uropathogenic microor-
ganisms on Blood Agar Plates (BAP) and CDC Anaerobic Blood Agar Plates. The
streaking pattern ensures individual colonies are separated for accurate iden-
tification and subsequent testing. Plates were incubated under appropriate
aerobic or anaerobic conditions to facilitate the growth of targeted organisms.

Fig. 2. Purity plate layout for verification of isolated colonies. The plating
layout used to confirm the purity of isolated colonies prior to further testing.
This step is critical to ensure the reliability of qPCR results and minimize the
potential for contamination from non-target microorganisms. The plates were
divided into sectors to maximize space and reduce sample cross-contamination.

uropathogens (Table 3), scraped from purity plates using a sterile 1 pL
inoculation loop. After inoculation, the urine samples were sealed and
vortexed for a minimum of 30 seconds at maximum speed using a
Vortex-Genie 2 to ensure homogeneity.
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Table 2
Clinical Isolates Used for Microbiological Evaluation, Including Gram Stain,
Morphology, and Classification.

Microorganism Gram  Shape and Category
Arrangement
Enterobacter - Rod-shaped Enterobacteriaceae family
cloacae (bacilli)
Enterococcus + Cocci in pairs or  Enterococcus species; Group D
faecalis chains Streptococcus
Enterococcus + Cocci in pairs or  Enterococcus species; Group D
faecium chains Streptococcus
Escherichia coli - Rod-shaped Enterobacteriaceae family
(bacilli)
Klebsiella - Rod-shaped Enterobacteriaceae family
oxytoca (bacilli)
Klebsiella - Rod-shaped Enterobacteriaceae family
pneumoniae (bacilli)

Anaerobic rod-
shaped (bacilli)

Prevyotella bivia - Anaerobic Gram-negative bacilli

Proteus mirabilis - Rod-shaped Enterobacteriaceae family
(bacilli)
Pseudomonas - Rod-shaped Non-fermenting Gram-negative
aeruginosa (bacilli) bacilli; commonly associated with
nosocomial infections
Staphylococcus + Cocci in clusters Gram-positive cocci;
aureus Staphylococcus species
Streptococcus + Cocci in chains Gram-positive cocci; Group B
agalactiae Streptococcus; Beta-hemolytic
Table 3

Uropathogens and Diaper Brands Used in Spiking Procedure for qPCR Analysis.

Urine Uropathogens Diaper Brand

#

1 Enterococcus faecalis, Klebsiella TENA® ProSkin Stretch™
oxytoca

2 Enterococcus faecium FitRight® OptiFit™ Briefs

3 Klebsiella pneumoniae, Cardinal Health™ Sure Care™ Plus
Enterobacter cloacae Heavy Absorbency Underwear

4 Pseudomonas aeruginosa, Prevail® Per-Fit® Daily Underwear

Staphylococcus aureus (MRSA)

Escherichia coli

Proteus mirabilis

7 Streptococcus agalactiae,
Prevotella bivia

wu

FitRight® Underwear
Huggies® OverNites Diapers
Pampers Baby-Dry

o))

For each spiked urine sample, 25 mL was applied directly to the inner
surface of various diaper brands (Table 3), simulating the soiling pro-
cess. The remaining 25 mL each urine sample was reserved separately
for parallel qQPCR analysis. The soiled diapers were left at room tem-
perature for 4 hours, followed by refrigeration at 4°C for an additional
24 hours, typical clinical transport and storage delays. The remaining
urine samples were similarly stored—4 hours at room temperature fol-
lowed by 24 hours at refrigerated temperatures—to maintain consis-
tency between diaper-derived and traditional urine sample analyses.

2.4. Diaper wearing cohort

A cohort of 10 volunteers (5 females, 5 males) was recruited and
assigned to wear diapers (Equate, Assurance Underwear Maximum Ab-
sorbency L/XL) for a minimum of 8 hours without altering their normal
daily activities. Each volunteer was provided with a 24-hour urine
collection jug (McKesson, Male Urinal, 1 Quart/1000 mL) and instructed
to return the full volume of urine from a single elimination. Upon
completion of the wear period, the soiled diapers were placed in
biohazard bags (Uline, 12 x 15" Specimen Bags).

Upon receipt, the urine collected from each volunteer was entirely
poured onto the internal surface of their corresponding previously worn
diaper, accurately simulating the real-world scenario of diaper-based
urine collection. No measures were taken to prevent contamination
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from normal skin or genital mucosa microflora, as such contamination is
inevitable in actual clinical practice. This intentional inclusion ensured
the method’s robustness under realistic conditions.

Diaper samples were held at room temperature for 4 hours, followed
by refrigeration at 4°C for 24 hours, consistent with conditions used in
the spiked diaper studies. To evaluate potential contamination effects,
each diaper-derived sample was processed and analyzed twice: initially
without spiking, confirming that natural microflora did not cause false-
positive results, and subsequently spiked with positive QC material at
the lower limit of detection (LLoD) to verify that diaper material did not
impair sensitivity compared to a control sample (TE buffer spiked at the
same concentration).

2.5. Urine recovery procedure

Diapers were placed on a sterilized stainless-steel surface that had
been treated with 10 % bleach, allowed to dry, and then wiped with 98
% ethanol. The internal surface of each diaper was exposed by carefully
splaying it open. A sterilized razor blade (WorkPro 61 mm Boxcutter)
treated with the same sterilization process (10 % bleach, drying, 98 %
ethanol) was used to make an incision down the center of the diaper
lining, ensuring the fabric was lifted cleanly away from the diaper’s
absorbent batting. The incision was extended using sterilized stainless-
steel tongs (Eddeas® stainless steel cooking tongs), providing easy ac-
cess to the soiled diaper’s batting.

The soiled batting was transferred into a sterile specimen container
(LabAid™, Sterile Specimen Container with Temperature Strip) until it
reached three-quarters of the container’s capacity. Next, 2.5 grams of
calcium chloride (Thermo Fisher, Calcium Chloride, Anhydrous 93 %)
was added to the container. This is because sodium polyacrylate (NaPA),
the diaper’s superabsorbent polymer, retains fluid via ionic interactions
between its negatively charged carboxylate groups and positively
charged sodium ions (Na+). Calcium chloride (CaClz) is added to facil-
itate an ionic exchange reaction with NaPA:

2Na(PA) + CaCl2 — Ca(PA)2 + 2NaCl (€))

Here, calcium ions (Ca®*) form cross-links between carboxylate
groups in the polymer, effectively shrinking the polymer matrix and
releasing the absorbed liquid. Thus, CaCls, or another similarly charged
cation, is essential for efficiently recovering urine from the sodium
polyacrylate crystals for subsequent molecular testing. The container
was sealed and shaken vigorously to disperse the calcium chloride
evenly, causing a slight increase in temperature detectable by hand.

After the CaCl> was mixed thoroughly, the container was unsealed.
The contents were compressed using a stainless-steel cocktail muddler
(TrippleLife, 8" Cocktail Muddler) to release the urine absorbed in the
sodium polyacrylate crystals. The liberated urine was then transferred
using a 7 mL polyethylene transfer pipette (Globe Scientific) into a 15
mL conical tube (Axygen, SCT-15mL-500). This recovered urine was
subsequently processed according to standard nucleic acid extraction
protocols [6,24]. For a visual summary of this workflow, refer to Fig. 3.

2.6. Total nucleic acid extraction

For each urine sample, 600 pL was transferred into a 1.5 mL conical
tube (Eppendorf, 1.5 mL FlexTubes, natural) pre-loaded with RNase-free
zirconium oxide beads (Nextadvance, Zirconium Oxide Beads, RNase-
Free, 0.5 mm diameter, 4 mL) and 20 pL of Proteinase K (Invitrogen,
Proteinase K, 20 mg/mL). Lysis was performed using the QIAGEN Tis-
sueLyser II at 30 Hz for 5 minutes to ensure thorough disruption of cells
and efficient release of nucleic acids. Following lysis, 200 pL of the lysate
from each sample was transferred to a 96-well deep-well plate (Roche,
MagNA Pure 96 Deep-Well Plate) for nucleic acid extraction using the
Roche MagNA Pure 96 system. The extraction process was carried out
with the Pathogen Universal 3.0 protocol, utilizing commercially
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available reagents from the Roche MagNA Pure 96 DNA and Viral
Nucleic Acid Small Volume Kit (Roche, Basel, Switzerland). Each sample
was eluted in a final volume of 100 pL, which was then used for sub-
sequent qPCR analysis to assess the presence and quantity of specific
nucleic acids.

2.7. Diaper matrix effects

Total nucleic acids extracted from diapers worn by the 10 volunteers
were processed in duplicate and transferred into 1.5 mL conical tubes
(Eppendorf, 1.5 mL FlexTubes, natural). One aliquot from each sample
was evaluated without any modifications, while the second aliquot was
spiked with synthetic double-stranded DNA (dsDNA) controls (1000 ¢/
uL. PC; www.scienetix.com) at the LLoD of the assay (10 c/uL). The
purpose of spiking the second aliquot was to ensure that no PCR in-
hibitors were present in the sample preparation or extraction processes
[25], which could otherwise reduce the assay’s sensitivity at the LLoD
[26]. In parallel, an aliquot of Tris-EDTA buffer was also spiked with
synthetic dsDNA at the LLoD to serve as the reference or true value
against which all diaper-derived sample results were compared. For
quality control, unspiked aliquots were tested to confirm that no path-
ogenic targets were detected in any of the 10 diaper-derived samples,
verifying the absence of cross-reactivity due to microflora contamina-
tion from prolonged (8-hour) diaper wear. This step was crucial to rule
out false-positive results that could arise from environmental contami-
nation during wear [27].

2.8. De-identified clinical samples and diaper batting comparison

A total of 35 de-identified and previously characterized clinical
samples, sourced from Advanta Genetics (www.aalabs.com), were
analyzed using a CLIA/CAP-validated qPCR panel specifically designed
for the detection of UTI pathogens. Following the initial qPCR evalua-
tion, 2 mL of each sample were transferred into sample collection tubes
(Sarstedt, 10 mL Tubes) containing fresh, dry diaper batting material.
The batting, sourced from new, unused diapers (Equate Assurance Un-
derwear, Maximum Absorbency, L/XL), occupied approximately one-
third of the tube’s volume. These prepared samples were stored under
refrigeration overnight to assess the stability and compatibility of the
storage medium. Subsequent qPCR analysis using the same CLIA/CAP-
validated UTI panel was performed to directly compare the results of
the diaper-based storage approach to the original characterization,
allowing for a comparative analysis of the method’s impact on test
integrity and accuracy.

2.9. Pathogen detection

A total of 34 samples were processed through the total nucleic acid
extraction procedure. This included seven urine samples spiked with
cultured uropathogens, seven corresponding diaper samples spiked with
half the volume of their paired urine samples, and 10 urine samples
collected from worn diapers, each representing the volume of a complete
elimination. These 10 urine samples were processed in duplicate and
divided into two groups: spiked and unspiked, to assess the impact of the
diaper matrix with respect to qPCR sensitivity [26]. All samples,
including spiked and unspiked groups, were analyzed for the presence of
22 uropathogens, 6 fungal species, and 18 antimicrobial resistance
(AMR) genes (Table 3). Commercially available pre-designed PCR re-
action mixtures (www.scienetix.com, Tyler, TX, USA) were used for all
assays. The total nucleic acid extracted from each sample (2.5 pL) was
added to each reaction mixture, totaling 80 pL of extracted material per
sample across multiple reactions.

The reaction mixtures (RM1-RM16) were added to a 384-well plate
(Roche, LightCycler® 480 Multiwell Plate 384, White) as per the layout
described in Fig. 4. Each plate included both a positive amplification
control and a negative amplification control to ensure assay reliability
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Fig. 3. Workflow for recovering urine from sodium polyacrylate-based diapers for molecular diagnostics. This visual summarizes the step-by-step process for urine
recovery from sodium polyacrylate-based diapers. It includes diaper disassembly, extraction of urine from absorbent material, and preparation of the recovered urine
for nucleic acid extraction. Key tools and reagents are highlighted to ensure reproducibility of the workflow.
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Fig. 4. Layout of PCR reaction mixtures in 384-well plate. Each well is designated for specific targets, including bacterial species, fungal pathogens, antimicrobial
resistance genes, and controls. This layout ensures efficient and simultaneous detection of multiple targets in a high-throughput qPCR format. Each column is
dedicated to a single sample and columns 23 and 24 are reserved for positive and negative amplification controls. Positive controls confirm assay sensitivity, while
negative controls verify the absence of contamination or false-positive amplification. The control placement ensures assay reliability and data integrity.

[28,29]. gPCR following nucleic acid extraction using a laboratory-developed
test (LDT) validated by Advanta Genetics, a CLIA-certified, CAP-
3. Results accredited laboratory (see Table 1 for assay). All spiked uropathogens
were detected in both urine and diaper-recovered samples (Table 4),
3.1. Urine and diapers spiked with uropathogens demonstrating reliability of the extraction and qPCR protocols.

Urine and diaper pairs spiked with uropathogens were analyzed via



T. Vine et al.

Table 4
Comparative qPCR Detection of Uropathogens in Spiked Urine and Diaper-
Derived Samples.

Sample Target Diaper Urine A Ct % Diff

# Ct Ct

1 Enterococcus faecalis 20.23 20.67 0.44 213 %

1 Klebsiella oxytoca 24.31 22.40 -1.91 —8.53 %

2 Enterococcus faecium 31.40 29.98 —-1.42 —-474%

3 Enterobacter cloacae 26.77 25.32 -145 -573%

3 Klebsiella pneumoniae 20.64 17.57 -3.07 —17.47

%

3 Sulfhydryl Variable 20.32 18.24 -2.08 —-11.40
B-lactamase (SHV) %

4 Pseudomonas aeruginosa 22.79 21.94 —0.85 —3.87%

4 Staphylococcus aureus 22.51 20.61 —-1.90 -9.22%

4 Methicillin resistance 23.39 21.49 -190 -884%
gene (MecA)

5 Escherichia coli 22.59 20.45 —2.14 -10.46

%

5 Quinolone resistance 22.64 20.26 —2.38 —-11.75
gene (qnr) %

6 Proteus mirabilis 23.27 21.94 -1.33 —6.06 %

7 Streptococcus agalactiae 34.53 34.51 —0.02 —0.06 %

7 Prevotella bivia 32.78 29.68 —3.10 —10.44

%

3.2. Matrix effects of diapers

Diapers worn for at least 8 hours, then spiked with a single urine
volume, were processed through the nucleic acid extraction protocol in
duplicate. One aliquot from each sample underwent qPCR to determine
if microflora accumulated during wear would cause false positives. The
results showed no universal detection of pathogens across samples, and
no pathogens were found in the volunteer-derived samples, confirming
that the diaper microflora did not significantly cross-react after 8 hours
of wear, eliminating concerns about false positives in qPCR analysis.

The second aliquot was spiked at the lower limit of detection (LLoD,
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10 c/uL) for all targets and analyzed. A Tris-EDTA buffer control spiked
at the same LLoD served as a reference. All spiked targets in the diaper
samples successfully amplified, demonstrating that detection at the
LLoD was achievable. Comparing Ct values from spiked diaper samples
to the Tris-EDTA bulffer control, all targets fell within +3.33 cycles of the
control, confirming that diaper material did not significantly affect the
sensitivity or accuracy of detection at the LLoD. Although slight vari-
ability in Ct values was observed, positive amplification of all targets
confirmed the integrity of the qPCR assay in the presence of diaper
material.

3.4. Comparative qPCR detection of uropathogens

Fig. 5 shows the mean Ct value for diaper-derived samples was 24.87
(+4.70), while the mean Ct for urine samples was 23.22 (+4.90). The
average ACt between diaper and urine samples was —1.65, indicating
that Ct values from diaper samples were, on average, 1.65 cycles higher,
which suggests a minor reduction in sensitivity associated with urine
recovery from diaper matrices. The mean percentage difference between
the two sample types was —7.60 %, indicating a modest decrease in
detection sensitivity.

A high Pearson correlation coefficient (r = 0.979) was observed
between Ct values of diaper-derived and urine samples, demonstrating
strong concordance in detection outcomes between the two matrices.
The Ct values for diaper samples ranged from 20.23 to 34.53, while
those for urine samples ranged from 17.57 to 34.51, indicating com-
parable variability across the sample types. Notably, no sample exhibi-
ted a ACt greater than 3.33 cycles, which corresponds to a 10-fold
dilution, accentuating that significant sensitivity loss was not observed
in any sample.

The median Ct values were 23.03 for diaper samples and 21.72 for
urine samples, with a mean ACt of —1.65 cycles and a 95 % confidence
interval of [-2.23, —1.07]. Cohen’s d was 0.34, indicating a small to
medium effect size. No significant outliers were found based on ACt
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the diagnostic equivalence of the two sample matrices despite minor sensi-
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values. Despite minor sensitivity reduction in diaper-derived samples,
the strong correlation between diaper and urine Ct values (r = 0.979)
and the small effect size suggest minimal interference from the diaper
matrix in detecting uropathogens. Given that a 3.33 Ct cycle difference
equates to a 10-fold dilution, this slight loss in sensitivity could be
mitigated by sample concentration.’

3.5. Evaluating diaper matrices for diagnostic concordance with clinical
urine samples

Both clinically positive samples (n = 22) and clinically negative
samples (n = 13) sourced from Advanta Genetics (www.aalabs.com)
were spiked onto diaper batting (Equate, Assurance Underwear
Maximum Absorbency L/XL) and compared to their corresponding urine
counterparts to evaluate the reliability and diagnostic consistency of the
diaper-based sample recovery method (Table 5). These spiked samples
underwent rigorous assessment for concordance with unaltered, previ-
ously characterized clinical specimens. The analysis encompassed 17
bacterial targets, 4 fungal targets, 6 antimicrobial resistance (AMR)
targets, and 1 control target (RNAseP), representing a comprehensive
array of clinically relevant pathogens and resistance markers encoun-
tered in diagnostic practice. Across all 35 samples, the results demon-
strated 100 % PPV and NPV concordance in target detection, with all
targets remaining detectable following 24 hours of refrigerated exposure
to the diaper batting. Mean Ct differences between the diaper and urine
matrices ranged from —2.06 to 3.87, with a mean absolute Ct difference
of 1.43 across all targets. Notably, critical targets such as Escherichia
coli and Staphylococcus aureus exhibited mean Ct differences of —0.36
and 2.93, respectively, emphasizing the diaper matrix’s comparable
sensitivity. The diaper matrix maintained consistent diagnostic integrity
under simulated transport and storage conditions, supporting its
viability as an alternative collection matrix.

Statistical analysis reinforces the suitability of the diaper matrix as a
viable alternative to the urine matrix for clinical diagnostics. The cor-
relation coefficient (r = 0.97) indicates a strong positive relationship
between the Ct values of the two matrices, highlighting their compa-
rable performance in target detection. Additionally, the diaper matrix
demonstrates slightly lower variability, with a standard deviation (SD =
4.02) compared to the urine matrix (SD = 4.48), and a smaller coeffi-
cient of variation (CV% = 13.41 % vs. 15.12 %), indicating more
consistent Ct values relative to the mean. While a paired t-test reveals a
statistically significant difference in Ct values between the matrices (t-
statistic = 2.85, p-value = 0.0068), these differences likely stem from
matrix-specific properties or handling factors, which can be addressed
through calibration protocols or interpretive adjustments to ensure
diagnostic accuracy.

Together, these findings substantiate the diaper matrix as a reliable
and consistent alternative, offering comparable detection capabilities.
The study also highlights practical advantages of the diaper matrix, such
as its ease of sample collection, particularly in pediatric and mobility-
restricted populations, and its potential for non-invasive diagnostics.
These results position the diaper matrix as a viable tool for expanding
accessibility and flexibility in clinical diagnostic practices.

4. Limitations

While this study demonstrated the feasibility of using sodium
polyacrylate-based diapers for molecular UTI diagnostics, several

! To address this, 6 mL of diaper-recovered urine can be centrifuged to form a
pellet. The pellet may then be resuspended in 600 pL of either the original
supernatant or Tris-EDTA buffer (Fisher Bioreagents, 1x Solution, pH 8.0) to
concentrate the sample. The concentrated urine would undergo lysis as
described in prior protocols, compensating for the sensitivity loss observed in
the cycle threshold (Ct) values and improving detection accuracy.
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Table 5
Comparative Analysis of Urine and Diaper Matrices for Clinically Positive and
Negative Samples.

qPCR Target P TN FP FN Mean Mean Mean
AGt(Diaper-

Urine)

Diaper Urine

CT CT

Acinetobacter 0 35 0 0 NA NA NA
baumannii

Actinotignum 2 33 0 0 28.09 27.13 0.96
schaalii

Aerococcus urinae 2 33 0 0 29.78 31.19 —1.41

Bacteroides fragilis 3 32 0 0 27.28 28.27 —0.99

Candida albicans 1 34 0 0 26.46 24.29 217

Candida auris 0 35 0 0 NA NA NA

Candida glabrata 3 32 0 0 27.28 26.66 0.62

Candida 0 35 0 0 NA NA NA
parapsilosis

Candida tropicalis 1 34 0 0 23.50 25.56 —2.06

Citrobacter 1 34 0 0 17.59 15.66 1.93
freundii/braakii/
koseri

Enterobacter 7 28 0 0 30.21 27.57 2.64
cloacae

Enterococcus 10 25 0 0 25.68 23.74 1.94
faecalis

Enterococcus 1 34 0 0 31.96 33.26 -1.3
faecium

Epidermophyton 0 35 0 0 NA NA NA
floccosum

Escherichia coli 12 23 0 0 23.05 23.41 —0.36

Klebsiella aerogenes 2 33 0 0 21.53 19.16 2.37

Klebsiella oxytoca 3 32 0 0 24.43 25.03 —0.6

Klebsiella 5 30 0 0 25.53 22.78 2.75
pneumoniae

Morganella 1 34 0 0 18.80 14.93 3.87
morganii

Prevotella bivia 3 32 0 0 32.47 31.32 1.15

Proteus mirabilis 0 35 0 0 NA NA NA

Proteus vulgaris 0 35 0 0 NA NA NA

Pseudomonas 1 34 0 0 24.84 21.54 3.3
aeruginosa

Serratia marcescens 0 35 0 0 NA NA NA

Staphylococcus 2 33 0 0 23.67 20.74 2.93
aureus

Staphylococcus 3 32 0 0 30.69 29.18 1.51
haemolyticus

Staphylococcus 1 34 0 0 23.62 21.94 1.68
saprophyticus

Streptococcus 3 32 0 0 24.11 22.99 1.12
agalactiae
(Group-B)

Streptococcus 0 35 0 0 NA NA NA
pyogenes (Group-
A)

Trichophyton 0 35 0 0 NA NA NA
rubrum

Beta Lactamase 4 31 0 0 23.77 21.32 2.45
Resistance (SHV)

Beta Lactamase 5 30 0 0 23.62 20.85 2.77
Resistance (TEM)

Beta Lactamase 0 35 0 0 NA NA NA
Resistance (CTX-
M-Grp1)

Carbapenem 0 35 0 0 NA NA NA
Resistance (NDM)

Carbapenem 0 35 0 0 NA NA NA
Resistance (OXA-
48)

Fluoroquinolone 0 35 0 0 NA NA NA
Resistance (gyrA)

Fluoroquinolone 0 35 0 0 NA NA NA
Resistance
(qnrAS)

(continued on next page)
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Table 5 (continued)

qPCR Target TP TN Fp FN Mean Mean Mean
Act(Diaper-

Urine)

Diaper Urine

CT CT

Methicillin 4 31 0 0 30.77 29.87 0.90
Resistance
(MecA)

Sulfonamide 5 30 0 0 32.42 33.69 -1.27
Resistance (Sull)

Tetracycline 0 35 0 0 NA NA NA
Resistance (TetB)

Tetracycline 14 21 0 0 29.99 29.53 0.46
Resistance (TetM)

Trimethoprim 1 34 0 0 22.00 23.53 —1.53
Resistance
(DfrA1)

Vancomycin 0 35 0 0 NA NA NA
Resistance
(VanA)

Vancomycin 0 35 0 0 NA NA NA
Resistance (VanB)

Vancomycin 0 35 0 0 NA NA NA
Resistance
(VanM)

RNAseP 13 22 0 0 30.92 30.11 0.81

Note: NA = no positive clinical sample.

limitations should be noted. First, diaper materials may introduce in-
hibitors or reduce sample integrity, leading to increased Ct values and
slightly reduced sensitivity compared to clean-catch urine, particularly
at low pathogen concentrations [30]. Although sample concentration
can mitigate this, further studies are needed to ensure consistency across
different diaper brands. Second, prolonged diaper wear may increase
environmental contamination risk, even though no false positives were
observed [9]. This should be further investigated under varied clinical
conditions. Third, variability in urine recovery from soiled diapers may
lead to inconsistent sample concentrations, affecting diagnostic accu-
racy [31]. Concentration steps, while effective, add complexity to
routine workflows. Fourth, the efficacy across a broader range of path-
ogens, including polymicrobial and fastidious organisms, still needs
validation [32]. Last, although no significant qPCR inhibition was
observed, potential inhibitors from diaper materials or urine substances
must be further evaluated across a wider range of diapers and patient
populations [33]. Finally, while duplicate testing aligns with clinical
laboratory validation guidelines (CLSI EP05-A3) and is adequate for
initial method verification, further comprehensive validation incorpo-
rating triplicate or higher replicates would provide enhanced statistical
rigor and reproducibility assurance.

5. Clinical implications

A validated method for non-invasive urine collection using sodium
polyacrylate-based diapers offers several important clinical implica-
tions: enabling non-invasive sample collection for difficult-to-serve
populations, supporting rapid and accurate pathogen detection,
improving antimicrobial stewardship, enhancing diagnostic specificity,
mitigating MDRO risks, and extending the reach of advanced di-
agnostics. Together, these benefits highlight the potential of this
approach in improving patient care, particularly for populations at high
risk of inappropriate antibiotic treatment and infection-related
complications.

5.1. Non-invasive urine collection

The first clinical implication is the non-invasive nature of the
approach, which is particularly beneficial for populations where
midstream collection is impractical. This includes elderly patients with
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advanced dementia or young children who are not toilet-trained. For
elderly residents with cognitive impairments, such as those in nursing
homes, assessing suspected UTIs is challenging due to communication
barriers and the high risk of antimicrobial resistance [34]. A
non-invasive and efficient urine collection method, like the diaper-based
approach, allows for consistent and reliable urine sampling without the
need for patient cooperation, reducing the challenges and risks of
standard invasive methods. This can help mitigate issues associated with
UTI overdiagnosis, inappropriate treatment, and antibiotic misuse,
particularly for vulnerable populations who cannot adequately
communicate symptoms.

5.2. Accurate PCR-based uropathogen detection

The second clinical implication is the enhanced diagnostic accuracy
offered by PCR-based detection of uropathogens, which this method
facilitates. This approach supports faster, more precise identification of
causative pathogens, thereby allowing for targeted antibiotic use and
contributing to the reduction of antimicrobial resistance—a key concern
in nursing home environments [35]. By avoiding empirical treatment
with broad-spectrum antibiotics, healthcare providers can mitigate the
development of multidrug-resistant organisms (MDROs). Moreover, the
method eliminates the need for invasive catheterization, reducing pa-
tient discomfort and the associated risks of secondary infections. The use
of PCR, in contrast to traditional culture methods, also provides ad-
vantages in diagnosing infections where culture results might be nega-
tive or ambiguous, such as when patients are already on antibiotics,
when multiple pathogens are present, or when organisms are atypical
[36]. This increased sensitivity supports accurate diagnosis, even in
challenging circumstances, thereby enhancing clinical decision-making
and improving patient outcomes.

5.3. Timely results and their impact on antimicrobial stewardship

The third implication relates to the speed of results. The molecular
diagnostic capabilities of this method, such as qPCR, provide results
notably faster than traditional urine cultures, which can take between 3
and 12 days depending on the nature of the results (e.g., negative versus
positive or contaminated cultures) [11]. Rapid detection facilitates
timely clinical decisions, allowing for the prompt initiation, adjustment,
or discontinuation of antibiotic therapy as needed. In long-term care
facilities, where delays in diagnostic results often lead to the overuse of
antibiotics [37], faster diagnostics can directly contribute to more
effective antimicrobial stewardship. Studies have shown that while
culture results often suggest changes to antibiotic therapy, these changes
are implemented in only a minority of cases, primarily due to delays in
culture reporting [38]. By reducing these delays, the validated diaper
urine extraction method promotes better alignment between clinical
practice and evidence-based antimicrobial use, thereby addressing both
patient care needs and broader public health concerns related to anti-
microbial resistance.

5.4. Enhanced diagnostic reliability and specificity

The fourth clinical implication is the improved diagnostic reliability
and specificity of PCR-based testing in distinguishing uropathogenic
infections from contamination. By combining non-invasive urine
collection with PCR, and potentially supplementing it with embedded
nitrite and leukocyte esterase testing strips, this method provides a
comprehensive diagnostic tool. Although not considered in this study,
the use of diaper-embedded test strips to detect nitrite and leukocyte
esterase may further enhance the novelty of this diaper-based technique
by preemptible differentiation of true pathogens from contaminants,
offering a practical, non-invasive, and robust solution for more
comprehensive workflow toward accurate UTI diagnosis [39].

Although there is no universally absolute quantitative criterion, a
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commonly accepted threshold for diagnosing UTIs is the detection of
>10"5 colony-forming units (CFU) of a single organism per milliliter of
urine, which can be applied to PCR quantification as well [40]. In pe-
diatric patients undergoing bladder catheterization, a lower threshold of
10,000 CFU/mL optimally balances sensitivity and specificity [41]. PCR,
with its higher sensitivity, provides a diagnostic advantage, especially in
situations where traditional cultures may yield negative or inconclusive
results. This is often the case for urine samples from patients already on
antibiotics, samples containing organisms other than E. coli or Proteus,
or from male patients where culture growth may be minimal or absent.

This is particularly crucial for vulnerable populations, such as chil-
dren undergoing bladder catheterization, where balancing risks and
benefits of invasive interventions while ensuring accurate detection of
infections is essential. Overall, the enhanced sensitivity and specificity
of PCR-based diagnostics improve the identification of uropathogens,
ensuring that treatment decisions are based on more precise and reliable
data, thereby improving patient outcomes.

5.5. Implications for mitigating multidrug-resistant organisms

The fifth clinical implication is the potential impact of this method
on mitigating the development and spread of multidrug-resistant or-
ganisms (MDROs) in healthcare facilities. Antimicrobial exposure is a
significant driver of MDRO colonization, especially in long-term care
environments, where inappropriate empirical antibiotic treatment is
common [42,43]. The use of timely PCR diagnostics can reduce inap-
propriate antibiotic exposure, thereby decreasing the risk of MDRO
development. In elder care facilities, where the prevalence of MDROs
among residents, especially those with advanced dementia, is dispro-
portionately high, a reliable diagnostic method that limits unnecessary
antibiotic use can play a crucial role in curbing the spread of resistant
pathogens [37]. This has significant public health implications, given
the frequent transfer of nursing home residents to hospitals, potentially
introducing MDROs into broader healthcare systems [44]. By facili-
tating precise organism identification and reducing empirical antibiotic
use, this diaper extraction method supports efforts to maintain antimi-
crobial stewardship and improve infection control across healthcare
settings.

5.6. Scalability and practicality in varied healthcare settings

Finally, the simplicity of the urine extraction method using sodium
polyacrylate-based diapers makes it suitable for a broad range of
healthcare environments, from large clinical laboratories to smaller,
point-of-care settings. Its non-invasiveness and ease of use are particu-
larly advantageous in under-resourced healthcare settings where tradi-
tional sample collection methods may be logistically challenging. The
scalability of this technique enables broader access to advanced diag-
nostic capabilities, potentially reducing disparities in healthcare quality
between different settings. By providing a reliable and sensitive diag-
nostic option that is easy to implement, this method can enhance diag-
nostic capabilities in locations where conventional methods are not
feasible, ensuring that vulnerable populations—such as those in long-
term care facilities or remote regions—receive timely and appropriate
care.

6. Conclusion

This study presents a novel, non-invasive method for UTI diagnostics
using sodium polyacrylate-based diapers for urine collection in patients
unable to provide clean-catch samples. The optimized extraction tech-
nique preserved pathogen detection integrity via qPCR, with minimal
matrix effects, even after prolonged wear. These results validate the use
of diaper-recovered urine in molecular assays, offering an effective
alternative for UTI testing in vulnerable populations such as infants, the
elderly, and those with incontinence. This innovative approach not only
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ensures sample viability and qPCR sensitivity but also overcomes
collection barriers, enhancing both patient compliance and diagnostic
accuracy—offering a scalable, non-invasive solution that combines
reliable sample collection with high-sensitivity molecular testing.
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